DEEP LEARNING NN MODULE

                                                 Build deep Learning NN models

LINK  : PROGRAM (DATASET - FETCH AUTOMATIC)

Aim

To build deep learning NN (Neural Network) models.

Algorithm

1.     Load the dataset

2.     Split the dataset into input x and output y

3.     Define the keras model

4.     Compile the keras model

5.     Train the keras model with the dataset

6.     Make predictions using the model


EXPLANATION

  • You need to fix the import statement for Sequential and Dense. They are on the same line, which will cause a syntax error.
  • The for-loop should be properly indented.
  • In model.predict(X), it's best to use .predict_classes() for binary classification problems if you're using older versions of Keras, or you can use a threshold check (> 0.5) for newer versions of TensorFlow/Keras. 

    Explanation of changes:

    1. Import Fix: Fixed the import statement for Sequential and Dense on separate lines.
    2. Prediction Handling: The prediction values are checked against 0.5 (for binary classification), and then converted to integer values (astype(int)).
    3. For-loop Formatting: Fixed indentation for the for loop to print the first five predictions correctly.
  • No comments:

    Post a Comment